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ABSTRACT

A differential equation describing the energy transfer between a fluid and a body
moving in that fluid was derived. The derivation, based upon the Coriolis form of the
Navier-Stokes Equation, contains a rigorous viscous correction. For inviscid ideal cases,
the equation demonstrates that the rate of total enthalpy transfer from (or to) the system is
a function of the transverse component of the pressure gradient. Therefore, for practical

turbomachineay rotors, the derivative, p/e180, can never vanish.

On integration of the differential equations, a form of the Euler Turbomachinery
Equation with viscous correction is derived. The resultant form contains two distinct
work rate terms for the axial and radial componeL's of the flow. The fact that integration
yields a result which approximates the classic Euler Turbomachinery Equation constitutes
confirmation of the d uivation.

An application of the equation to an ideal infinite linear cylinder with bound vortic-
ity was developed, yielding the expected known result.
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NOMENCLATURE
f any continuous function

fr. radial fraction of the mass flow rate

A axial fraction of the mass flow rate

h enthalpy per unit mass of fluid

I,, total enthalpy per unit mass of fluid

H. total enthalpy of a fluid

Ho' total enthalpy of a fluid per unit length of blade

I relative total specific rothalpy

L lift per unit length of blade

m mass flow rate

in, radial mass flow rate

"h axial mass flow rate
p local static pressure

Pa total pressure
q a generalized curvilinear coordinate

q a specific heat rate

r radial coordinate of a cylindrical coordinate system

s entropy per unit mass of fluid
t time

T absolute temperature

U velocity of the blade and a function of the radius

V velocity

(VIS) the integrated viscous term of Equation (22)

W relative fluid velocity in a moving rotor frame

W' a time-dependent component of the velocity in the moving frame

z axial coordinate of a cylindrical coordinate system

r the circulation

a tangential angle coordinate in cylindrical coordinates

V the kinematic viscosity

P' the stress tensor separated from the thermodynamic pressure

Q local fluid density

r volume

i, a stream function

f " angular velocity vector
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INTRODUCTION

A monument of turbomachinery technology, the Turbomachinery Equation of Euler
is based upon thermodynamic definitions of work and Newton's Laws. Since the Navier-
Stokes Equations and Crocco's Equation [1.2] in a rotating (moving) frame are also based
upon thermodynamics and Newton's Laws, they must in principle contain the Turboma-
chinery Equation in differential form and, on integration, in integral form. Application of
Coriolis' transformation to the viscous form of Crocco's Equation leads to an uncoupled
expression for the substantial derivative of the total enthalpy in a differential turboma-
chinery equation which, on integration, yields a novel form of the Turbomachinery
Equation corrected for viscous non-ideal flow.

The classical Turbomachinery Equation is an integrated expression arising from
Euler's analysis of fluid torque and mechanical shaft work transferred between a fluid
and a rotor moving in that fluid. Since heat transfer is negligible in most turbomachines,
the shaft work has been equated to the specific total enthalpy transfer, Euler's Turboma-
chinery Equation (sme Horlock [31, page 77, Equation 4.3) as follows:

Aho = A(UVu), (1)

where Vu is the component of the absolute velocity, V, in the direction U of the rotor
(or energy-transferring device).

Whether one interprets the quantity in the right member of (1) as shaft work or as a
change in the specific total enthalpy, the right member is a function only of the end points
of the integration. Therefore, the integral is an exact or total integral, and it represents a
"unction of state. However, in non-conservative, dissipating systems, attempts to express
the thermodynamic process in terms of the end points alone leads to thermodynamic in-
consistencies. An example of such inconsistencies arises in the consideration of a
propeller windmilling on a frictionless shaft in a moving fluid. Since the shaft delivers no
work, a viscous correction is necessary whether the right member of (1) represents work
or a change in the specific total enthalpy.

These points are discussed in more detail in terms of the new differential equation.
Also, an application of the differential turbomachinery equation is described for a two-di-
mensional, ideal, linear turbine.

THE TRANSFORMATION BETWEEN ABSOLUTE AND MOVING FRAMES

In the following discussion the subscripts v and w represent the absolute and the
moving frame coordinate and vector values. (See Figure 1 and the Nomenclature for defi-
nitions of quantities.) A frequently used relation connecting the absolute and moving
frame velocities is

V-W+U. (2)

Following Spannhake 141, spatial derivatives in the moving frame and time derivatives
have the following relationship:

CARDEROCKDIV-MRD-,80--93--10



The Transformation

zv-Zw+zo-Zwz ffze=O

k - OW+ cot P0 (t.O)

Figure I. Conflgumtfona relationships between the absolute andl moving coordinee systemse.
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r eq rw \t U e. (3)

Similar results are obtained for non-rotating systems with cartesian coordinates.

( ,, 4 ," (4)

Equations (3) and (4) define, in fact, the crypto-steady criterion [5), which, if U is con-
stant, indicates that a frame exists in which the flow regime may be truly steady state.

Since the vector operator V is independent of time and since vector operators are
independent of frame,

Now from Equation (3) for any static functionf,

(Bf) = U(Of =-U.V~ff-U.Vf.
, /, aq., (6)

where qj represents all the position coordinates in the absolute frame and q, is the mo-
ving-frame coordinate in the direction of motion of the lifting body (such as the 1
direction for a rotor). Equation (6) is an extension of the usual crypto-steady relation.

To appreciate the significance of the final equation of this section, consider an ob-
server located on a blade of a rotating windmill in an infinite fluid which at infinity
translates with uniform constant velocity. The observer cannot detect any time-dependent
changes in the fluid at any given point on the blade. However, on moving to the absolute
frame, the observer notes changes in velocity, pressure and temperature as each blade
passes (see Dean [6]). Thus, the inequality

(±)# 0 , ()O (7)

indicates that in the moving frame all partial time derivatives may vanish while the abso-
lute partial time derivative may be finite.

Note, however, in contrast with the inequality (7) that the substantial derivative of
any static quantity at a point is independent of the coordinate system or frame and is
therefore an invariant with respect to frame.

CARDEROCKDIV-MRD-8O-93-10 3



DERIVATION OF THE DIFFERENTIAL AND INTEGRAL FORMS

UNCOUPLING THE SUBSTANTIAL TOTAL ENTHALPY DERIVATIVE
IN THE MOVING AND ABSOLUTE FRAMES

Relationships between absolute and relative flow fields are given by the Coriolis
form of the Navier-Stokes Equations [3,7-11].

a~v
-+VV 2 /2-Vx (V x V)

i +VW2/12-W X (V x W)+2& X W-Vu 2/2

8t
-Vp +Iv.u,"

Q Q (8)

where ;' represents the stress tensor excluding the pressure tensor pd , and U is inde-

pendent of time. The relative acceleration, 8W/1t, is defined in the relative frame; i.e.,

Using the absolute-frame equality of (8) and the gradient form of Gibbs' equation of
state, the substantial derivative of the total enthalpy is obtained in terms of the partial de-
rivative of the pressure, the substantial derivative of the entropy and the stress tensor

' See Wu et al. (7-91.

Dho, 1(ap) D .V
D•- \' t, Dt 1 (9)

At this point non-ideal analysis stops unless the partial derivative of the pressure
with respect to time is resolved in terms of the pressure gradient [101. Employing Equa-
tion (6) with the static pressure as the arbitrauy function the result is

Dh U DsV 0 p _Ds V

.Vp+TR-+E- (V.;')--0---TL.V.'. (0
Dt Dr (10)

Equation (10) may be simplified further using Wu's (reference [8] page 91) defini-
tion of the substantial derivative of the entropy in the moving frame following a particle
of fluid (the entropy and its substantial derivative are invariant with respect to frame).
Thus:

Ds =Tb q+---' :VW', (11)

where q represents heat transfer, and the second term is the specific dissipation. Then
from (10) and (11), eliminating the substantial derivative of the entropy, one obtains [10]

4 CARDEROCKDIV-MRD-80-93-10



h... ap I +
Dt e (12)

Now Equation (8) may be used to replace the pressure gradient in (12). From the dot

product of U with the moving frame equality in (8) the pressure gradient term becomes
(see Reference [10] ):

S.. __ ap = U. --U-W + UV. (W V)W+ 2U 7at X W

-U-VU2/2-1I . (V "').
U (13)

The gradient of the static pressure is of course invariant in all frames, but the mov-
ing frame equation in (13) is convenient for later integration. Combining (12) with (13),
the substantial derivative of the total enthalpy uncoupled from the entropy and pressure is
obtained.

Dh- W c .(W.V)W+2U Tx W+v .(?.W +4
Dt 8, (14)

Equation (14), the essential development of this paper, is a differential turbomachin-

ery equation expressed in terms of the moving frame velocity vector and q . It is
universally applicable in any moving frame whether rotating or not.

Referring to Equation (12), a particularly simple statement is obtained for ideal in-
viscid flow:

DholDt = - U. Vp/e = - (o,8p/l )/Q (15)

The second equality in (15) is specific to three-dimensional rotating machines. Contrary
to Reference [3], pp. 7-8, only the transvc;5e presmire gradient term survives in an invis-
cid system, indicating that neither axial nor radial pressure gradients are germane to the
calculation of specific total enthalpy transfer. (Mass flow rates are of course a function of
axial or radial pressure gradients.) The impulse stages of turbomachines prove that axial
or radial pressure gradients need play no role in energy transfer.

The conclusion that there can be no energy transfer without a transverse pressure
gradient is implicit in the logic of Euler, who insisted that only the transverse component
of the momentum is effective. Nevertheless, the assumption that transverse pressure gra-
dients vanish*is popular in streamline curvature methods of design because it permits a
simplified two-dimensional calculation of blade desigp [7-9, 1].

Equation (14) permits a revisiting of Dean's unsteadiness paradox [6] if one en-
quires into the possibility of rotor energy transfer between bladeless discs or concentric

*h Its ained that fori hminfit number of blades, dp becomes on irnfiitesimal, and thimfore apo va-
nises which, of eourme, violates the milss of calculus.

CARDEROCKDIV-MRD-80-93-10 5



cylinders (U = 0). (Dean's paradox is resolved most simply by reference to Equation

(6)). A steady state prevails in both the absolute and the moving frame, and (aW/at) va-
nishes. However, the viscous term in (14) does not vanish, thus providing a mechanism
for energy trmafer.

Dh, I~
Dt q

Mechanical energy transfer is accomplished by the second viscous work term of the right
member in (16). It is necessary in steady-state systems that the vis~cous dissipation and the
heat loss balance.

The ideal mechanisms of energy transfer contained within U. Vp/p and defined by
(13) through (15) in their ideal limit, include a term based upon the Coriolis force among
others. Some writers (see pp. 115-117 of Reference [ 111) have suggested that the Coriolis
term is the necessary and sufficient term for energy transfer. If this were indeed true, then
axial machines and linear quasi two-dimensional machines with vanishing w, such as the
wings of planes and the sails of ships would be useless.

THE TOTAL ROTHALPY ARGUMENT

Wu's totp.1 relative rothalpy relation [7-9] (see also [12]) with I defined by

h + W2/2 - U2/2 - h,- UVU is given by:

T;. e t (17)

Consider a system in which the observer is fixed to a blade of an isolated rotating
air screw or a marine screw in an infinite uniform fluid. No time-dependence can be
sensed in the moving frame and a crypto-steady-state prevails [6]. The moving-frame
partial derivative of the pressure with time must vanish. This poses a great Riimplification
which justifies common practice [13] in the design of marine screws where time depen-
dence (and heat transfer) are generally ignored.

Now, if viscosity, beat transfer and the time-dependent terms vanish, (17) reduces to

W. V-0 (18)

The well known non-trivial solution is

VI - V(h + W2/2U- 172/2) - V(ho- UVu) - 0 (19)

Equations (19) represent gradient forms of the classic Turbomachinery Equation in the
moving and absolute frame. Integration of the right member of (19) over a stream tube in
the absolute frame yields the classic Turbomachinery Equation (1). The argument demon-
strates that Equation (1) is strictly true only for isentropic and steady-state flow in a

6 CARDEROCKDIV-MRD--80-93-.i0



4

stream tube. However, in systems with dissipation, it is necessary to account for non-ideal
effects in (1).

MOVING FRAME TIME DEPENDENCE

Consider in Equation (14) a small sinusoidal moving-frame oscillation imposed on

the relative velocity W leading to a new velocity, W + W' . The ratio of the magnitude

of time-dependent W' to time-independent W will be arbitrarily fixed at ! 0.05 . The

imposed frequency of the time-dependent WV is at least an order of malm-itude greater
than the blade velocity.

With Reynolds averaging, the partial derivative of WI' with respect to time will van-
ish. However, the Reynolds average over non-linear terms will lead to non-vanishing
Reynolds stress terms which will not be addressed here. As a result of the Reynolds time-
averaging process, Equation (14) may be written

( !} -U .(WV) WI)+2U. × a X +Wl/LV V .WI+1(20

where the braces represent the Reynolds time average and WI and ;' include the time-

dependent W'. This notation will not be used again.

In the Reynolds time-averaging process, the acceleration term drops out as ex-
pected. Elimination of the acceleration term simplifies the integration of (14). As
mentioncd, heat transfer is generally not significant in most rotors 1 11, 13], and in partic-
ular, those associated with pumps and marine screws, and it will be ignored here.

Now, note that arbitrary samples of turbulent flow over short (relative to the blade)
periods may be written as a Fourier summation of regular sinusoidal oscillations. For the
limited picture developed here, Equation (20) is again applicable according to the above
argumenL

INTEGRATION OF THE TOTAL ENTHALPY RATE

A proper test of (14) would be whether, on integration over the !otor blade-to-blade
flow, it would predict a total enthalpy transfer compatible with that of the classic Turbo-
machinery Equation (1). Therefore, the integration of (14) for czypto-steady conditions
will be performed as a test in the three-dimensional domain. Then an application of the
new equation will be developed in a two-dimensional linear turbine.

In the integration process it will be assumed that the flow may be divided into
streams which pass between a given pair of blades. In the rotating frame the streamitube
walls are fixed steady-state walls associated with a steady-state mass flow rate m which
may consist of radial and axial mass flow components.

DERIVATION OF THE INTEGRAL FORM FROM THE DIFER ENTIAL FORM

The substantial derivative of the total enthalpy represents power transfer at any
point in a flow field between the fluid and a body moving at constant speed in that fluid.
To obtain the total enthalpy transfer rate over the entire field, it is necessary to integrate
(14) thus:

CARDEROCKDIV-MRD-80-93-10 7



f J Dr, d

DtD

-f fJ fJl [U -(W -V)W+ 2U -U x W) rdrd~dz

+JfJJfV.(-.W) rdrd~dz.(1

where the second term of the right member is the viscous term. Th fust term of the right
member of (21) is the tangential component of the convection term obtained on dot multi-
plication with U, i.e.,:

eU. (W. V)W

' aw, We + we -w + , a.we wxe
Or r *O a r8 ) (22)

The first and fourth terms of (21) will be combined in an integral identified by 11.4 thus:

r Or (23)

")r

where we have used the mean value theorem to take W# (r) outside the double integral.
Thus:

W = WO d0 . (24)

The factor in parentheses in the right member of (23) is the radial mass flow at any point

mA(r)-JfJfQW.dOdz -n(r). (25)

where f,(r) is the radial faction of the mass flow rate m. Then

CARDEROCKDIV-MRD-eO-43-10



114 MfMr) 9 dr - m f fd(vWO). 26

Now, in the steady-state the mean value of f,(r), fi ,is a constant given by

T exit
fe,-:, d(C )/A(U ) ), (27)

and,

11.4 W nV4,AX(Uwe) - vM(Uj7e), - (UW*)r 1 1 (29)

where A, is the mean value of mi . Using the same arguments as used for the radial
mass flow, the integral of the third team of the right member of (22) may be written to

show the axial mass flow rate m2(z) explicitly. With the velocities, W,, We, and U av-

eraged over r and 6, one obtains the steady-state mean value, Wh,, and

13 - i[(WWe) 22 - (UWO),]. (29)

The second term of the right member of (22) provides an integral, 12, which con-
tains the tangential kinetic energy.

12- f f 2-( fI dO) drdz

f-1 JR~t[W:2(02) -W.(e)+rd. -0 (30)

Since the tangential velocities at the blade walls are the blade velocity, the integral va-
nishes.

Now identifying the second term of the first integral in the right member of (21 as
1j, we may write using the above arguments

13 MJJfJ 2QeW~rWrdrd6& - rf4U) 1 (~.(31)

Summing the components of integration (28) through (31)

CARDEROCKDIV-MRD--8-3-10 9



if jQ Dt

+ rkAiz(UW#) + (VIS), (32)

where A, and A. represent the change along r and z respectively, and (VIS) is the inte-
grated viscous term.

Now adding *.&U which is zero to (32),

f' e Lh- Q!!drm .- (U+:,C

))f Dt *J4WeU

+ MA I + ,9)) + VIS - mk . (33)

In(33)the terms We are aveaged over 6 and z in the first taemand overrand 0 inthe
second term. Finally,

Aho -f.AUV, ) ,4UVe) + (VIS)/m - 400) + (VIS)/ . (34)

In the right member of (34) the term (VIS) contains the viscous work as well as the
dissipation, which may provide a net outflow of energy in viscously-coupled bladeless
devices. The delta term which approximates the right member of Euler's Equation (1)
may be considered a pseudo-ideal term.

Equation (34) exhibits some similarity with the ideal Equation (1). The fact that
mathematical spatial averaging processes have been employed suggests that the pseudo-
ideal term cannot be a function of the end points alone. Therefore, the pseudo-ideal term
cannot be ideal unless the system is ideal. Similar conclusions apply to the total relative
rothalpy [12], which depends upon the pseudo-ideal term.

It is easy to combine the axial and radial flow terms in (34) by letting the operator
A vary in both r and z .The derivation supports the conclusion that Equation (14) is
indeed a differential turbomachinery equation.

A two-dimensional application and test of the differential form (14) on an ideal lin-
ear device where the solution is known precisely will now be examined.

THE SUBSTANTIAL TOTAL ENTHALPY RATE IN A
TWO-DIMENSIONAL DEVICE

An infinite circular cylinder with bound circulation, as shown in Figure 2, i an ele-
mental linear turbine. It may be considered as an infinite sail on a sailboat or an infinite
wing on a sailplane. The device extracts energy from the ideal inviscid working fluid.
Work is performed on the sailplane (fixed to a vertical rail) by rr Ising its height at uni-
form speed U against gravity. Work on the sailboat is perfo'med by moving the boat at
uniform speed U which elevates a weight attached at minus infinity by an Ifnt tether,

10 CARDEROCKDIV-MRD-60-O3-10
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In the moving frame the apparent velocity of the ideal working fluid at infinite distance is
W,. The relationship between the absolute and moving coordinate system and the velo-
cities is given by the transformation of Figure 1.

Preston [14] computed energy transfer in two-dimensional arrays of ideal vortex
points by transforming their potential functions to the absolute frame where they exhibit
time dependence. The study involves circular cylinders of finite dimensions with bound
vorticity which can be transformed into two-dimensional airfoils. Energy transfer is de-
veloped in steady-state moving frames by integrating Equation (14) over all space.

THE TOTAL ENTHALPY TRANSFER RATE BASED ON AERODYNAMICS

Since the flow field is ideal, the flow domain may be described by a potential func-
tion or its conjugate stream function. The lift is therefore the ideal lifting force. L, of the
Kutta-Joukowski Equation given by

L Q pWI7, (35)

where r is the scalar circulation. The units are force per unit length of cylinder. In the
absolute and moving frame the lift component Ly directed parallel to the y axis of Figure
2 is given by

S- Qw r = Q V J, (36)

where the subscript x represents the x component. Recalling that U is the velocity of mo-
tion of the device (sail or wing or rotating cylinder) as perceived in the absolute frame,
the power is the product of U and Ly.

Power/unit length w eUWor . (37)

Since we assume that there is no heat rate,

DHo'
Dt (38)

where H.' is the total enthalpy of the system per unit length of lifting surface. Equation
(38) is the anticipated relationship which should ultimately be developed from the differ-
ential form (14).

THE STREAM FUNCTION, VELOCITY AND RELATIVE ENTHALPY
IN THE FRAME OF THE BLADE

Since ideal flow has been Lssumed in the moving frame of the blade, the stream
function, iis the usual function modified for motion along the y axis.

CARDEROCKDIV-MRD-O-3-10
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Figure 2. The skogl-baft Unsew tUrbi: (a) uuIVwi. vrslon; (b) smiloat veulon,
sid (c) the miting cylinder bed..
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= - Woy(1 - a2/r2)r cos 0 + Wo•(l - a2/r 2)r sin 0

+ (I/2x) ln(r/a). (39)

The constant a is the radius of the cylinder. The cartesian velocity components are
obtained by the usual transformation [10] as follows:

.2My _w -2) 202W,.
WX- W"+ X2 + .~y 2-i

r y

2x g (+ y) (40)
w, - wOY- ((X• ,*:2 ...

r x

Now the relative vorticity must vanish because potential flow cannot have vorticity.
A check of the vorticity in the relative frame shows that indeed it vanishes. Also, the ti-
me-dependent term vanishes.

THE SUBSTANTIAL TOTAL ENTHALPY DERIVATIVE

In the linear two-dimensional system, the differential form of the turbomachinery
equation (14) is simplified because the rotation vanishes.

Dh--- .0  g. V)W
D W VW(42)

Since the vorticity vanishes

W- .VWVw2/2, (43)

and

D . Ur. VW2/2- . a

Dt 2 8y,. (44)

The Integrated substantial total enthalpy rate per unit length [where the subscript on y in
(44) has been dropped] is

DHo', I FI) dyd+w x)

D'-nr 2 ay (45)

Integration of (45) will be performed over all space per unit length z of the blade. The
choice of time is immaterial since the fluid dynamics are steady state ia the moving frame

CARDEROCKDIV-MRD-043-- 1O 13



and the thermodynamic rates over all space are invariant with time. It is understood that
the integration applies only to the fluid domain and that boundaries at solid walls are ob-
served.

Now without going into details [101 the integral of the total derivative in (45) is

DHot _ 4to X(a2- _X2)1/2(2.X2- a2)

+ 2W ,rx(a2 _Xa)11 2  8Wo0 Ux(a2 - X2)' 2

+a 4 a

Wor(a2 -2)1/ 2  4WoUx(a2 - x2)1/ 2(a2 - 2x2)
S "4 "$ a

Wor(a2 _ x2)112(a2  (46)
+ 4

Note that only odd terms in y make any contribution to (46). Since the first and fifth
terms cancel, only four terms remain. The integration with respect to x is performed
through a transformation employing

xffacosO , (47)

with integration limits given by

0=z when x--a

0"0 when x=a . (48)

Making the substitutions

DH '(Wax 1 LCesm2e~i2jD440 W -QU coOsnOO

- 8W..Ua cos sin 2 8d-f!Jj sin2OdO

WOrJ 0 sin2e(l|2cos 2ot) ,)

1A OO (49)

14 CARDEROCKDW-.MRD.-80--g3-! 0



In (50) the second integral makes no contribution because it is antisymmetric. The first
integral cancels the seond term in the last integral to yield from the surviving terms

DHO'S -m -QWo.,U -Q Vo'U .
Dr (50)

Equation (50) is identical with (38) and this result illustrates a useful application of
the differential form and constitutes confirmtion of the validity of the differential turbo-
machinery Equation (14). For the linear case, the energy transfer rate of the rotor is
proportional to the component of the kinetic energy gradient-parallel to the moving rotor.

CARDEROCKDIV-MRD-8-3-10 15
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